bit map graphics - Übersetzung nach russisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

bit map graphics - Übersetzung nach russisch

THE TRANSFORMATION OF THE UNIT INTERVAL THAT MAPS X TO 2X MOD 1
Dyadic map; 2x mod 1 map; Bernoulli map; Doubling map; Bit shift map; Bit-shift map; Sawtooth map

bit map graphics      
графический материал с побитовым отображением
bit-mapped graphics         
  • reflection]] (almost free), either before or afterwards, amounts to a 90° image rotation in one direction or the other.
  • A simple raster graphic
  • Using a raster to summarize a point pattern.
DOT MATRIX DATA STRUCTURE, REPRESENTING A GENERALLY RECTANGULAR GRID OF PIXELS, OR POINTS OF COLOR, VIEWABLE VIA A MONITOR, PAPER, OR OTHER DISPLAY MEDIUM
Bit-mapped graphics; Bitmap graphics; Raster image; Raster format; Raster Graphics; Pixelmap; Bitmapped; Raster images; Bit-Mapped Graphics; Rastor; Bitmapped graphics; Bitmapped image; Raster graphic; Rasterized image; Video raster; Raster data; Bitmapped display; Raster drawing; Contones; Gridded data

Смотрите также

bitmapped graphics

dyadic transformation         

математика

диадическое преобразование

Definition

bit string
<programming, data> An ordered sequence of bits. This is very similar to a bit pattern except that the term "string" suggests an arbitrary length sequence as opposed to a pre-determined length "pattern".

Wikipedia

Dyadic transformation

The dyadic transformation (also known as the dyadic map, bit shift map, 2x mod 1 map, Bernoulli map, doubling map or sawtooth map) is the mapping (i.e., recurrence relation)

T : [ 0 , 1 ) [ 0 , 1 ) {\displaystyle T:[0,1)\to [0,1)^{\infty }}
x ( x 0 , x 1 , x 2 , ) {\displaystyle x\mapsto (x_{0},x_{1},x_{2},\ldots )}

(where [ 0 , 1 ) {\displaystyle [0,1)^{\infty }} is the set of sequences from [ 0 , 1 ) {\displaystyle [0,1)} ) produced by the rule

x 0 = x {\displaystyle x_{0}=x}
for all  n 0 ,   x n + 1 = ( 2 x n ) mod 1 {\displaystyle {\text{for all }}n\geq 0,\ x_{n+1}=(2x_{n}){\bmod {1}}} .

Equivalently, the dyadic transformation can also be defined as the iterated function map of the piecewise linear function

T ( x ) = { 2 x 0 x < 1 2 2 x 1 1 2 x < 1. {\displaystyle T(x)={\begin{cases}2x&0\leq x<{\frac {1}{2}}\\2x-1&{\frac {1}{2}}\leq x<1.\end{cases}}}

The name bit shift map arises because, if the value of an iterate is written in binary notation, the next iterate is obtained by shifting the binary point one bit to the right, and if the bit to the left of the new binary point is a "one", replacing it with a zero.

The dyadic transformation provides an example of how a simple 1-dimensional map can give rise to chaos. This map readily generalizes to several others. An important one is the beta transformation, defined as T β ( x ) = β x mod 1 {\displaystyle T_{\beta }(x)=\beta x{\bmod {1}}} . This map has been extensively studied by many authors. It was introduced by Alfréd Rényi in 1957, and an invariant measure for it was given by Alexander Gelfond in 1959 and again independently by Bill Parry in 1960.

Übersetzung von &#39bit map graphics&#39 in Russisch